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1 PERIODIC MOTION

1 Periodic Motion

1.1 Describing Oscillation

The amplitude of the motion A, is the maximum magnitude of displacement from the equi-
librium.

The period T , is the time to complete one cycle. The SI unit is second.

The frequency f , is the number of cycles in a unit of time. The SI unit is hertz. It is the
reciprocal of T .

f = 1
T

T = 1
f

The angular frequency ω is the frequency in rad/cycles. Given that a rad cycles every 2π,
the formula for ω is:

ω = 2πf

ω = 2π
T

This means that in a T amount of time ω would complete one rotation, or in one unit of
time, ω completes a f amount of full rotations.

1.2 Simple Harmonic Motion

The simplest kinds of oscillations are when the restoring force mẍ is directly proportial to
the displacement from the equilibrium x. This is also known as Hooke’s law. The constant of
proportionality between the restoring force and the displacement is k.

mẍ = −kx

Solving for the acceleration of an object in SHM, we get that:

ẍ = − k

m
x

An object that undergoes simple harmonic motion is called a harmonic oscillator. Not all
periodic motions are simple harmonic, but in most systems the restoring force is approximately
proportional to the displacement if the displacement is sufficiently small enough.

Using differential equations, we can solve for the equation for x. Let x(0) = x0 and ẋ(0) = v0.
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1 PERIODIC MOTION

ẍ = − k

m
x

This is a linear and homogenous differential equation with constant coefficients. We assume that
ert is a solution to the equation. Taking the double derivative of ert results in r2ert

r2ert = − k

m
ert

Cancelling out the common term ert:

r2 = − k

m

r = ±i

√
k

m

Now we let ω =
√

k

m
. The full solution is a linear combination of the two possible solutions:

x(t) = C1e
iωt + C2e

−iωt

We can use Euler’s identity: eix = cosx+i sin x to simplify this into terms with sines and cosines

x(t) = A cos(ωt) +B sin(ωt)

Since x(0) = x0, A = x0:

x(t) = x0 cos(ωt) +B sin(ωt)

Taking the derivative:

ẋ(t) = −x0ω sin(ωt) +Bω cos(ωt)

Since ẋ(0) = v0, B = v0
ω
:

x(t) = x0 cos(ωt) +
v0
ω

sin(ωt)

This is my preferred form of the equation. You can combine linear combinations of sine and
cosine with the same coefficients into a singular term:

x(t) = A cos(ωt+ φ)

Where A =
√
x20 +

(
v0
ω

)2
is the maximum amplitude of the function, and φ is the phase shift

of the function, where tan(φ) = − v0
x0ω

.

The total energy of the simple harmonic oscillator is given by:

E = 1
2kA

2
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1 PERIODIC MOTION

Angular simple harmonic motion:

ω =
√

κ

I

θ = Θcos(ωt+ φ)

1.3 Pendulums

We can extrapolate the simple harmonic oscillator to a pendulum:

mθ̈ = −g

ℓ
sin θ

This does not look like a linear relationship. We can approximate a linear relationship if θ
is sufficiently small enough.

sin θ = θ

mθ̈ = −g

ℓ
θ

We can then extrapolate the formula from the spring-mass system into the simple pendulum:

ω =
√

g

ℓ

f = 1
2π

√
g

ℓ

T =
√

ℓ

g
2π

θ(t) = A cos(ωt+ φ)

For physical pendulums:

ω =

√
mgd

I
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1 PERIODIC MOTION

1.4 Damped and Forced Oscillations

Damped oscillations:

x = Ae−(b/m)t cos(ωt+ φ)

ω =

√
k

m
− b2

4m2

Forced oscillations:

A = Fmax√
(k −mω2

d)
2 + b2 + w2

d

1.5 Examples

Two strings with the same unstretched length but different force constants k1 and 2 are
attached to a block with mass m on a level, frictionless surface. Calculate the effective force
constant keff in three cases: In parallel, opposite sides and in series.

An object of mass m is suspended from a uniform spring with a force constant k, vibrates
with a frequency f1. When the spring is cut in half and the same objected is suspended from
one of the halves, the frequency is f2. What is ratio f1

f2
?
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2 Mechanical Waves

2.1 Wave Speed

The wave speed, v, is defined as the product of the wavelength and the frequency of the
wave:

v = λf

Where λ is the wavelength. Rearranging to find lambda:

λ = v

f

k stands for the wave number. It is the number of radians of phase per unit length:

k = 2π
λ

This describes the angular speed of the phase in space. It is the direct equivalent to ω but
for the spatial dimension. We can rewrite ω in terms of k using the formula v = λf :

v = λf

v = λ
ω

2π

v = ω

k

vk = ω

2.2 Wave Equation

A wave function for a sinusoidal wave propagating in the +x-direction is:

y(x, t) = A cos(kx− ωt)

A function y(x, t) is a wave function if it satisfies the equation:

∂2y(x, t)
∂x2

= 1
v2

∂2y(x, t)
∂t2

Derivation of the wave equation:
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2 MECHANICAL WAVES

L = (x1, . . . , xn, ∂1u, . . . , ∂nu)

∂L

∂u
=

n∑
i=1

∂

∂xi

∂L

∂(∂iu)

L = K − V

K = 1
2µ dx

(
∂y

∂t

)2

∆s = ∆x

√
1 +

(∆y

∆x

)2

ds ≈ dx
(
1 + 1

2

(
∂y

∂x

)2)

V = T (ds− dx)

V = T

2 dx
(
∂y

∂x

)2

L = 1
2µ dx

(
∂y

∂t

)2
− T

2 dx
(
∂y

∂x

)2

L = L

dx

L = 1
2µ
(
∂y

∂t

)2
− T

2

(
∂y

∂x

)2
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2 MECHANICAL WAVES

∂L
∂y

= ∂

∂x

∂L
∂(∂xy)

+ ∂

∂t

∂L
∂(∂ty)

0 = µ
∂2y

∂t2
− T

∂2y

∂x2

T
∂2y

∂x2
= µ

∂2y

∂t2

∂2y

∂x2
= µ

T

∂2y

∂t2√
T

µ
= v

∂2y

∂x2
= 1

v2
∂2y

∂t2

The transverse velocity of any particle in a transverse wave vy is given by the partial derivative
of the wave function with respect to time:

vy(x, t) =
∂y(x.t)

∂t

The speed of a transverse wave on a string is:

v =
√

F

µ

Where F is the tension on the string and µ is the mass density per unit length of the string.

In general terms, v is the square root of the ratio of the restoring force of the system over
the inertia resisting the return.

v does not depend on vy.

2.3 Power and Intensity of Waves

The force Fy of a string is given by:

Fy(x, t) = −F
∂y(x, t)

∂x

Negative sign is needed because Fy restores the position to equilibrium, and so must be
negative when slope is positive.
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2 MECHANICAL WAVES

The power of that the wave does (rate of doing work) is given by:

P (x, t) = Fy(x, t)vy(x, t) = −F
∂y(x, t)

∂x

∂y(x, t)
∂t

This is the instanteneous rate at which energy is transferred along the string at position x
and time t. Energy is only transferred when the strong has a nonzero slope.

Using the wave function we have:

P (x, t) = Fy(x, t)vy(x, t) = −F
∂y(x, t)

∂x

∂y(x, t)
∂t

y(x, t) = A cos(kx− ωt)

P (x, t) = −F · −kA sin(kx− ωt) · ωA sin(kx− ωt)

P (x, t) = FkωA2 sin2(kx− ωt)

P (x, t) = F
ω2

v
A2 sin2(kx− ωt)

P (x, t) =
√
µFω2A2 sin2(kx− ωt)

As such, the maximum power that the wave equation will transmit is:

Pmax =
√
µFω2A2

And the average is simply half of that:

Pav = 1
2
√
µFω2A2

Intensity, denoted by I, is the rate of energy per time per unit area. W
m2 is the unit.

The average wave intensity I1 through a sphere of radius r1 and a surface area 4πr21

I1 =
P

4πr21

This follows the inverse square law.
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2 MECHANICAL WAVES

I1 =
P

4πr21

I2 =
P

4πr22

I1
I2

=
P

4πr21
P

4πr22

I1
I2

=
r22
r21

2.4 Interference, Boundary Conditions and Superposition

Principle of Superposition: When two waves overlap, the actual displacement on the string
is simply the additions of the displacements of the point on the first wave and on the second
wave:

y(x, t) = y1(x, t) + y2(xt) · · ·

Indeed, wave functions are additive and this still satisfies the wave equation.

2.5 Standing Waves on a String and Fundamental Frequencies

A wave function for a standing wave on a string, fixed end at x = 0 is:

y(x, t) = α sin kx sinωt

α is twice the amplitude of A of either of the original travelling waves.

L = n
λ

2

λn = 2L
n

fn = n
v

2L

The fundamental frequency for a string fixed at both ends is:

f1 =
1
2L

√
F

µ
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2 MECHANICAL WAVES

2.6 Examples

A 1.80 m long uniform bar that weighs 638 N is suspended in a horizontal position by two
vertical wires that are attached to the ceiling. One wire is aluminum and the other is copper.
The aluminum wire is attached to the left hand of the bar, and the copper wire is attached 0.40
m to the left of the right hand end. Each waire has length 0.600m and a circular cross section
with a radius of 0.280mm. What is the fundamental frequency of transverse standing waves for
each wire?
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3 SOUND AND HEARING

3 Sound and Hearing

3.1 Sound

Sound is a longitudinal wave in a medium.

Sound waves can be described as pressure fluctuations in the medium. The pressure of a
medium can be described by:

p(x, t) = −B
∂y(x, t)

∂x

p(x, t) = BkA sin(kx− ωt)

Thus the pressure amplitude of a sound wave is:

pmax = BkA

In general terms, v is the square root of the ratio of the restoring force of the system over
the inertia resisting the return. Bulk modulus is the restoring force of expansion while ρ or the
mass density per unit volume describes the inertia of the system.

In fluids:

Momentum = (ρvtA)vy

B = −Pressure Change
Fractional Volume Change = ∆P

−Avyt
Avt

∆p = B
vy
v

Impulse = ∆pAt = B
vy
v
At

B
vy
v
At = ρvtAvy

v =
√

B

ρ

In ideal gases:

v =

√
γRT

M
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3 SOUND AND HEARING

R = 8.314459848J/molK

In a solid:

v =
√

Y

ρ

3.2 Sound Intensity

I = 1
2
√
ρBω2A2 = p2max

2ρv = p2max
2
√
ρB

β = 10dB log I

I0

I0 = 10−12

3.3 Pipes

For an open pipe:

fn = nv

2L

For a stopped pipe:

fn = nv

4L

3.4 Beats

Two waves interfere constructively when they are in phase and destructively when they are
a half-cycle out of phase. The result wave rises and falls in intensity, forming beats.

fbeat = fa − fb

3.5 Doppler Effect

The doppler effect for sound is the shift in frequency when there is motion of the source of
sound S, the listener L, or both:

When a source is moving away from a listener, the waves behind the source are stretched to
a longer wavelength.
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3 SOUND AND HEARING

A listener moving toward a stationary source hears a frequency that is higher than the source
frequency.

fL = v + vL
v + vS

fS

Positive sign if from L toward S, negative if opposite.

When an object travels at a speed greater than the speed of sound in ari, it creates a shock
wave.

sinα = v

vS

3.6 Examples

A long spring is often used to demonstrate longitudinal waves. Show that if a spring that
obeys Hooke’s law has mass m, length L, and a force constant k, that the speed of longitudinal

waves on the spring is v = L

√
k

m
. Evaluate v for a spring with m = 0.250kg, L = 2.00m, and

k = 1.50 N/m.
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4 ELECTROMAGNETIC INDUCTION

4 Electromagnetic Induction
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5 ELECTROMAGNETIC WAVES

5 Electromagnetic Waves

Light is an electromagnetic wave.

Maxwell’s Equations

∮
E⃗ · dA⃗ = Qencl

ϵ0
Gauss’ Law (1)

∮
B⃗ · dA⃗ = 0 Gauss’ Law for Magnetism (2)

∮
E⃗ · d⃗l = −dΦB

dt Faraday’s Law (3)

∮
B⃗ · d⃗l = µ0

(
ic + ϵ0

dΦE

dt

)
encl

Ampere’s Law (4)

(5)

These equations apply to electric and magnetic fields in a vacuum. If a material is present,
the electric constant ϵ0 and the magnetic constant µ0 are replaced by the permittivity ϵ and the
permeability µ of the material.

According to Maxwell’s equations, an accelerating electric charge must produce electromag-
netic waves.

For example, power lines carry a strong alternating current, which means that a substantial
amount of charge is accelerating back and forth and generating electromagnetic waves.

These waves can produce a buzzing sound from your car radito when you drive near the
lines.

Electromagnetic Spectrum

The electromagnetic spectrum encompasses electromagnetic waves of all frequencies and
wavelengths.

Visible light is the segment of the electromagnetic spectrum that we can see. It extends from
the violet end (400 nanometers) to the red end (700 nanometers).

5.1 Plane Electromagnetic Waves and the Speeod of Light

To begin our study of electromagnetic waves, imagine that all space is divided into two
regions by a plane perpendicular to the x-axis.

The direction of the electric field, magnetic field and the movement of the plane are all
perpendicular to each other. E and B are same magnitude and direction.
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5 ELECTROMAGNETIC WAVES

E = cB Electroamagnetic wave in a vacuum.

B = ϵ0µ0cE

c = 1
√
ϵ0µ0

Inserting numerical values of these constants, we obtain that

c = 3.00× 108 m/s

The direction of propagation of an electromagnetic wave is the direction of the cross product
of the elctric and magnetic fields.

∂2Ey(x, t)
∂x2

= ϵ0µ0
∂2Ey(x, t)

∂t2

1
v2

= ϵ0µ0

Sinusodial electromagnetic plane wave propagating in the +x-direction:

E⃗(x, t) = ȷ̂Emax cos(kx− ωt)

B⃗(x, t) = k̂Bmax cos(kx− ωt)

k is the wavenumber and ω is the angular frequency. The unit vectors represent their
directions due to the plane wave propagating in the ı̂ direction.

Emax = cBmax

Speed of electromagnetic waves in a dielectric:

v = 1
√
ϵµ

= 1√
KKm

1
√
ϵ0µ0

= c√
KKm

The ratio of speed c in a vacuum to the speed v in the material is known as the index of
refraction n of the material:

c

v
= n
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5 ELECTROMAGNETIC WAVES

In a region of empty space where E⃗ and B⃗ fields are present, the total energy density u is:

u = 1
2ϵ0E

2 + 1
2µ0

B2

u = ϵ0E
2

Poynting vector is the vector quantity that describes the magnitude and direction of the
energy flow rate of the electric and magnetic field:

S⃗ = 1
µ0

E⃗ × B⃗

Intensity of sinusoidal electromagnetic wave in a vacuum:

I = Sav = EmaxBmax
2µ0

= E2
max

2µ0c
= 1

2

√
e0
µ0

E2
max = 1

2e0cE
2
max

Electromagnetic waves carry a momentum p, with a momenum density of

dp
dV = EB

µ0c2
= S

c2

Flow rate is:

1
A

dp
dt = S

c

Standing waves also exist for electromagnetic waves yay
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6 THE NATURE AND PROPAGATION OF LIGHT

6 The Nature and Propagation of Light

Light is both a wave and a particle this is crazy.

n = c

v

The laws of reflection and refraction

The incident reflected and refracted rays and the normal to the surface all lie in the same
plane. This plane of incidence is perpendicualr to the plane of the boundary surface between
two materials.

The angle of reflection is equal to the angle of incidence for all wave lengths and any pair of
materials.

θr = θa

Snell’s law

na sin θa = nb sin θb

Wavelength of light in a material

λ = λ0
n

When nb < na, total internal reflection occurs when

sin θb =
na

nb
sin θa

Critical angle happens when

sin θ = nb

na

Which means that

1 = sin θa

Polarized light makes the wave makes the thingy always lie in a plane and not what it
normally does

Malus’s Law:

I = Imax cos2 φ
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6 THE NATURE AND PROPAGATION OF LIGHT

Intensity of polarized light = maximum transmitted intensity times the square of the cosine
of the angle between polarization axis of light and polarizing axis of analyzer.

Brewster’s Law

tan θ = nb

na

Huygens’s Principle: every point on a wavefront can be considered a source of spherical
wavelets and that the propagation of the wave can be determined by the sum of these secondary
wavelets.

Huygens’s principle states that if the position of a wave front at one instant is known, then
the position of the front at a later time can be constructed by imagining the front as a source
of sec ondary wavelets. Huygens’s principle can be used to derive the laws of reflection and
refraction.
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7 Geometric Optics and Optical Instruments

Plane mirror s = −s′

Lateral magnification

m = y′

y

1
s
+ 1

s′
= 2

R

1
s
+ 1

s′
= 1

f

For a plane mirror, image is of the same size and same distance.

The beam of incident parallel rays converges to a focal point F .

f is the focal length it is one half radius of curvature.

na

s
+ nb

s′
= 0

Lensmaker equation

1
f
= (n− 1)

( 1
R1

− 1
R2

)
Sign rules

s > 0 when the object is on the incoming side of surface, s < 0 otherwise s′ > 0 when the
image is on the outgoing side of the surface s′ < 0 otherwise. R > 0 when the center of curvature
is on the outgoing side of the surface, R < 0 otherwise m > 0 when the image is erect, m < 0
when inverted.

A camera forms a real, inverted image of the object being photographed on a light-sensitive
surface. The amount of light striking this surface is controlled by the shutter speed and the
aperture. The intensity of this light is inversely proportional to the square of the f-number of
the lens.

f-number of a lens = f
D D is aperture diameter

The simple magnifier creates a virtual image whose angular size θ′ is larger than the angular
size θ of the object itself at a distance of 25 cm, the nominal closest distance for comfortable
viewing. The angular magnification M of a simple magnifier is the ratio of the angular size of
the virtual image to that of the object at this distance.

In a compound microscope, the objective lens forms a first image in the barrel of the in-
strument, and the eyepiece forms a final virtual image, often at infinity, of the first image. The
telescope operates on the same principle, but the object is far away. In a reflecting telescope,
the objective lens is replaced by a concave mirror, which eliminates chromatic aberrations.

M = θ′

θ
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8 Interference
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9 Diffraction
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